MiR-34a Targeting of Notch Ligand Delta-Like 1 Impairs CD15+/CD133+ Tumor-Propagating Cells and Supports Neural Differentiation in Medulloblastoma
نویسندگان
چکیده
BACKGROUND Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies. METHODOLOGY/PRINCIPAL FINDINGS In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133(+)/CD15(+) tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1(+/-) p53(-/-)), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo. CONCLUSIONS/SIGNIFICANCE Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.
منابع مشابه
The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma.
Micro-RNA (miR) 199b-5p targets Hes1 in medulloblastoma, one of the downstream effectors of both the canonical Notch and noncanonical Sonic Hedgehog pathways. In medulloblastoma patients, expression of miR-199b-5p is significantly decreased in metastatic cases, thus suggesting a downregulation mechanism. We studied this mechanism, which is mediated mostly by Hes1 and epigenetic promoter modific...
متن کاملmicroRNA-34a is tumor suppressive in brain tumors and glioma stem cells.
We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a ex...
متن کاملMicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes.
MicroRNA-34a (miR-34a) is a transcriptional target of p53 that is down-regulated in some cancer cell lines. We studied the expression, targets, and functional effects of miR-34a in brain tumor cells and human gliomas. Transfection of miR-34a down-regulated c-Met in human glioma and medulloblastoma cells and Notch-1, Notch-2, and CDK6 protein expressions in glioma cells. miR-34a expression inhib...
متن کاملIdentification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma.
The growth of many cancers depends on self-renewing cells called cancer stem cells or tumor-propagating cells (TPCs). In human brain tumors, cells expressing the stem cell marker CD133 have been implicated as TPCs. Here we show that tumors from a model of medulloblastoma, the Patched mutant mouse, are propagated not by CD133(+) cells but by cells expressing the progenitor markers Math1 and CD15...
متن کاملNotch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors.
The Notch signaling pathway is required in both nonneoplastic neural stem cells and embryonal brain tumors, such as medulloblastoma, which are derived from such cells. We investigated the effects of Notch pathway inhibition on medulloblastoma growth using pharmacologic inhibitors of gamma-secretase. Notch blockade suppressed expression of the pathway target Hes1 and caused cell cycle exit, apop...
متن کامل